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Abstract
The digital simulation of an electron-phonon system, and more in general of fermion-boson systems, on quanutm computers in the NISQ era is an hardous
task, since it’s not clear how to generalize current state of the art methods, i.e. VQE, for such systems. To circumvent this problem, we aim to develop a scheme
capable of performing digital-analog simulations of similar models . We propose an hybrid architecture based on superconducting qubits and resonators with
the purpose of employing the Variation Cluster Approximation, which requires the measurement of Green’s functions. The proposed method will be tested on
the Hubbard-Holstein model, so as to obtain its phase graph.

Test Model
The test model is the Hubbard-Holstein model[1]:

H =−
L−1∑
j=1

∑
σ=↑,↓

tj(c∗
j+1σcjσ + c∗

jσcj+1σ) +
L∑

j=1

Ujnj↑nj↓+

− g
L−1∑

J,j=1

∑
σ=↑,↓

nj ,σ(bJ + b†
J) +

L∑
J=1

ωJbJb†
J

The model describes the following phenomena:
electron hopping
electron on-site repulsion
electron-phonon Holstein interaction
energy of the vibrational modes

The model is a generalization of the Fermi-Hubbard
model which accounts for the interaction between the
electrons in the Fermi-Hubbard lattice and the
vibrations of said lattice.
The minimal problem that can be considered is the
two-site model, which allows for two electrons each,
each coupled to a single boson, at half filling.

Simplified problem
To further simplify the problem, we first introduce a
spinless-fermions version of the Fermi-Hubbard
model, which is the following:
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In this model we keep the Holstein interaction as is,
while we consider the electrons spinless fermions
which conserve their anti-commutation relation. The
minimal problem for this version is the two-site
version, which allows for a fermion per site, each
couple to a boson, at half filling.

The device
Here we present the device for the simplified
model we consider:

The shown elements are as follows:
Q1, Q2: qubits identifying the two sites. Since
in the model at half filling there is a single
fermion, so |1 > shows the presence of the
fermion.
M: qubit used for the measurement of the
correlators of Q1 and Q2, so as to calculate
their Green’s function
R1, R2: resonators coupled respectively to Q1
and Q2, they are used to store the phonon
coupled to each fermion
A1, A2: ancillary qubits used to measure the
state of the R1 and R2

Q1, Q2 and R are coupled via 2-Qubit gates. We
allow for two possible choices:

C-phase gate, realized via a resonator
coupling
iSWAP, realized via a direct capacitive
coupling, as shown in figure

Particle Mapping

We encode phonons in the resonators R1
and R2 using NOON states[2]:

|ψ⟩ = 1√
2
(|N,0⟩ + eiϕ |0,N⟩) (1)

allowing by the Qi − Ri − Ai structures.
We encode the fermions using the following
procedure:
1 introduce the Majorana fermions:

xi = ci + c†
i yi = i(ci − c†

i )

2 encode the Majorana fermions using
Jordan-Wigner encoding

Ground State Preparation

We propose the following procedure to get to
the ground state:

1 we prepare a decoupled initial state:
we use the Variational Hamiltonian Ansatz to
prepare the ground state of the electronic part of
the model
we prepare the resonators in their ground state

2 we turn the electron-phonon interaction on
3 we evolve the system for a single Trotter

step
4 we obtain a quenched state
5 perform the correlator measurements
6 run the variational algorithm for the

inter-cluster interaction
7 we evaluate the grand-canonical potential

This procedure would provide a first
approximation of the behaviour of the model.
Further precision can be achieved by adding
further Trotter steps in the time evolution of the
model, obtaining an equilibrium state.

Variation Cluster Approximation [3]
We choose the Variational Cluster Approximation for the simulation. It consists in the following steps:

1 identify the minimal cluster as a subset of the full model lattice
2 evaluate the Green’s function of the minimal cluster
3 add the inter-cluster interaction and some symmetry-breaking terms if needed
4 use the Green’s function of the cluster to evaluate the grand-canonical potential of the full lattice
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